167 research outputs found

    X-ray CT analysis after blast of composite sandwich panels

    Get PDF
    Four composite sandwich panels with either single density or graded density foam cores and different face-sheet materials were subjected to full-scale underwater blast testing. The panels were subjected to 1kg PE4 charge at a stand-off distance of 1 m. The panel with graded density core and carbon fiber face-sheets had the lowest deflection. Post-blast damage assessment was carried out using X-ray CT scanning. The damage assessment revealed that there is a trade-off between reduced panel deflection and panel damage. This research has been performed as part of a program sponsored by the Office of Naval Research (ONR)

    High velocity impact resistance of fibre metal laminates

    Get PDF
    The high velocity impact resistance of fibre metal laminates (FMLs) based on combinations of three different aluminium alloys (6161-O, 6061-T6, 7075-T6) and a glass fibre reinforced epoxy resin have been investigated both experimentally and numerically. A series of perforation tests on multilayer configurations, ranging from a simple 2/1 lay-up to a seven ply 4/3 laminate. High velocity impact was conducted using a projectile gas-gun launcher, operating in the velocity range between 119 m/s and 252 m/s.[1] The impact response of fibre metal laminates samples was characterised by determining the energy required to perforate the panels. A stereoscopic Digital Image Correlation (DIC) method was adopted to measure full-field deformations and strain for FMLs which providing the full field strain history and 3D measurements up to sample perforation. The perforation resistance of the panels was predicted using the finite element analysis package Abaqus/Explicit. A vectorized user-defined material subroutine (VUMAT) was employed to define Hashin’s 3D rate-dependant damage criteria for the composite layers. The subroutine was implemented into the commercial finite element software ABAQUS/Explicit to simulate the deformation and failure of FMLs. Agreement between the predictions of the finite element models and the experimental data was good across the range of configurations. Ballistic limit of those FMLs was obtained from both the experimental tests and numerical approaches

    On the blast resistance of laminated glass

    Get PDF
    AbstractBlast resistant glazing systems typically use laminated glass to reduce the risk of flying glass debris in the event of an explosion. Laminated glass has one or more bonded polymer interlayers to retain glass fragments upon fracture. With good design, the flexibility of the interlayer and the adhesion between layers enable laminated glass to continue to resist blast after the glass layers fracture. This gives protection from significantly higher blast loads when compared to a monolithic pane. Full-scale open-air blast tests were performed on laminated glass containing a polyvinyl butyral (PVB) interlayer. Test windows of size 1.5m×1.2m were secured to robust frames using structural silicone sealant. Blast loads were produced using charge masses of 15kg and 30kg (TNT equivalent) at distances of 10–16m. Deflection and shape measurements of deforming laminated glass were obtained using high-speed digital image correlation. Measurements of loading at the joint, between the laminated glass and the frame, were obtained using strain gauges. The main failure mechanisms observed were the cohesive failure of the bonded silicone joint and delamination between the glass and interlayer at the pane edge. A new finite element model of laminated glass is developed and calibrated using laboratory based tests. Predictions from this model are compared against the experimental results

    Experimental techniques for ductile damage characterisation

    Get PDF
    Ductile damage in metallic materials is caused by the nucleation, growth and coalesce of voids and micro-cracks in the metal matrix when it is subjected to plastic strain. A considerable number of models have been proposed to represent ductile failure focusing on the ultimate failure conditions; however, only some of them study in detail the whole damage accumulation process. The aim of this work is to review experimental techniques developed by various authors to measure the accumulation of ductile damage under tensile loads. The measurement methods reviewed include: stiffness degradation, indentation, microstructure analysis, ultrasonic waves propagation, X-ray tomography and electrical potential drop. Stiffness degradation and indentation techniques have been tested on stainless steel 304L hourglass-shaped samples. A special interest is placed in the Continuum Damage Mechanics approach (CDM) as its equations incorporate macroscopic parameters that can represent directly the damage accumulation measured in the experiments. The other main objective lies in identifying the strengths and weaknesses of each technique for the assessment of materials subjected to different strain-rate and temperature conditions

    Solution heat treatment, forming and in-die quenching of a commercial sheet magnesium alloy into a complex-shaped component: experimentation and FE analysis

    Get PDF
    Interest in lightweight materials, particularly magnesium alloys, has increased significantly with rising efficiency requirements in the automotive sector. Magnesium is the lightest available structural metal, with a density approximately 35% lower than that of aluminium. The potential is great for magnesium to become a primary material used in future low carbon vehicle structures; however, there are significant obstacles, namely low ductility and formability, particularly at room temperature. The aim of this work is to present the feasibility of using the solution Heat treatment, Forming, and in-die Quenching (HFQ) process to produce complex shapes from a sheet magnesium alloy, and to use the results to verify a simulation of the process developed using commercial FE software. Uniaxial tensile tests were initially conducted to establish the optimum parameters for forming the part. Stamping trials were then carried out using these parameters, and a simulation set up modelling the forming operation. It was shown that the HFQ process could be used to form a successful component from this alloy, and that a good match was achieved between the results of the forming experiments and the simulation.The authors gratefully acknowledge the support from the EPSRC (Grant Ref: EP/I038616/1) for TARF-LCV: Towards Affordable, Closed-Loop Recyclable Future Low Carbon Vehicle Structures

    Underwater blast loading of partially submerged sandwich composite materials in relation to air blast loading response

    Get PDF
    The research presented in this paper focusses on the underwater blast resilience of a hybrid composite sandwich panel, consisting of both glass-fibre and carbon-fibre. The hybrid fibres were selected to optimise strength and stiffness during blast loading by promoting fibre interactions. In the blast experiment, the aim was to capture full-field panel deflection during large-scale underwater blast using high-speed 3D Digital Image Correlation (DIC). The composite sandwich panel was partially submerged and subjected to a 1 kg PE7 charge at 1 m stand-off. The charge was aligned with the centre of the panel at a depth of 275 mm and mimicked the effect of a near-field subsurface mine. The DIC deflection data shows that the horizontal cross-section of the panel deforms in a parabolic shape until excessive deflection causes core shear cracking. The panel then forms the commonly observed “bathtub” deformation shape. DIC data highlighted the expected differences in initial conditions compared to air-blast experiments, including the pre-strains caused by the mass of water (hydrostatic pressure). Furthermore, water depth was shown to significantly influence panel deflection, strain and hence damage sustained under these conditions. Panel deformations and damage after blast was progressively more severe in regions deeper underwater, as pressures were higher and decayed slower compared to regions near the free surface.An identical hybrid composite sandwich panel was subjected to air blast; one panel underwent two 8 kg PE7 charges in succession at 8 m stand-off. DIC was also implemented to record the panel deformations during air blast. The air and underwater blast tests represent two different regimes of blast loading: one far-field in air and one near-field underwater. The difference in deflection development, caused by the differing fluid mediums and stand-off distances, is apparent from the full-field results. During underwater blast the panel underwent peak pressure loading of approximately 52.6 MPa whilst during air blast the panel was subjected to 67.7 kPa followed by 68.9 kPa peak pressure loads in succession. The two experiments demonstrate the response of the same hybrid composite sandwich panel under two differing blast regimes.The post-blast damage and strength of the hybrid panels following air and underwater blasts were evaluated. Post-blast testing revealed that the underwater blast causes significantly more damage compared to air blast, particularly debonding between the skins and core. The air blast panel sustains no visible rear skin/core debonding, whereas 13 regions of rear-face debonds are identified on the underwater blast panel. Sustaining no front-skin breakage was advantageous for retaining a high proportion of the compressive modulus for this hybrid layup following underwater blast. Damage mechanisms were interrelated. Determining the most detrimental type is not straightforward in real explosive and non-idealised experiments, however debonding was understandably shown to be significant. A further study to isolate failure modes and improve in situ instrumentation is ongoing
    • …
    corecore